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Abstract
We consider a modified version of the BB84 quantum key distribution protocol
in which the angle between two different bases is less than π/4. We show that
the channel parameter estimate becomes the same as the original protocol with
sufficiently transmitted qubits. On the other hand, the statistical correlation
between bits transmitted in one basis and those received in the other basis
becomes stronger as the angle between two bases becomes narrower. If the
angle is very small, the statistical correlation between bits transmitted in one
basis and those received in the other basis is as strong as those received in the
same basis as the transmitting basis, which means that the modified protocol can
generate almost twice as long secret key as in the original protocol, provided
that Alice and Bob choose two different bases with almost the same probability.
We also point out that the reverse reconciliation often gives a different amount
of secret key to the direct reconciliation over Pauli channels with our modified
protocol.

PACS number: 03.67.Dd

1. Introduction

The Bennett–Brassard 1984 protocol (BB84 protocol) [2] is one of the most known protocols
for quantum key distribution (QKD). In this protocol, the sender, Alice, sends qubits in one of
four quantum states, represented by the quantum state vectors |0〉, |1〉, |+〉 = (|0〉 + |1〉)/√2,
|−〉 = (−|0〉 + |1〉)/√2, where {|0〉, |1〉} forms an orthonormal basis. Then the receiver, Bob,
measures them with either {|0〉, |1〉} or {|+〉, |−〉} basis. After that, Alice publicly announces
to which {|0〉, |1〉} or {|+〉, |−〉} basis each qubit belongs. Bob discards the measurement
outcomes whose bases do not contain the transmitted states. We call such a measurement the
mismatched measurement in this paper. After that, Alice and Bob perform the information
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reconciliation and the privacy amplification to obtain the same secret key as described in [15].
In this standard protocol, we have |+〉 = cos θ |0〉 + sin θ |1〉 and |−〉 = −sin θ |0〉 + cos θ |1〉
with θ = π/4. In this paper we shall call θ the angle between the two bases.

As far as the authors know, there is no literature that shows the merit of using smaller
values of θ in the BB84 protocol, while Tamaki et al [16] quantitatively demonstrated the merit
of adjusting the angle between two different quantum states in the Bennett 1992 (B92) protocol
[1]. A possible reason for the absence of the consideration of a narrower angle θ < π/4 is
that the narrower angle makes it difficult to obtain a meaningful lower bound on the amount
of secret key by the conventional channel parameter estimation as described in section 2.2.
This difficulty leads us to use the accurate channel parameter estimation method [17] for the
BB84 protocol with narrower angle. We shall show that over any quantum channel between
Alice and Bob, including Pauli channels, we can obtain almost the same amount of secret key
from mismatched measurement outcomes when the angle between two bases is sufficiently
narrow, while obtaining asymptotically the same amount of key per transmitted qubit from
matched measurement outcomes, by using the accurate estimation method. We note that we
have already considered obtaining secret key from mismatched measurement outcomes in
[11]. However [11] was not so useful because we cannot obtain secret key if the channel is a
Pauli one.

On the other hand, the amount of secret key is the same in the direct and reverse
reconciliations in the standard BB84 protocol over Pauli channels [15], even if we use the
accurate channel parameter estimation [17]. In contrast to this, we also point out that the reverse
reconciliation [4, 12] often gives different amount of secret key to the direct reconciliation
over Pauli channels with our modified protocol.

This paper is organized as follows. Section 2 presents a modified version of the BB84
protocol, its security and its performance analysis. Section 3 gives concluding remarks.

2. Protocol

2.1. Outline of the protocol

In this section, we shall show a variant of the BB84 protocol that tries to extract secret key
from mismatched measurement outcomes. Section 2.1 describes an outline of the protocol,
section 2.2 derives the amount of secret key, and section 2.3 considers the reverse reconciliation.
We define the matrices X and Z representing the bit error and the phase error, respectively, as

X|0〉 = |1〉, X|1〉 = |0〉,
Z|+〉 = |−〉, Z|−〉 = |+〉,

and Y = iXZ. We also fix 0 < θ � π/4 and define

|+θ 〉 = cos θ |0〉 + sin θ |1〉,
|−θ 〉 = −sin θ |0〉 + cos θ |1〉.

(1) Alice makes a random qubit sequence according to the i.i.d. uniform distribution on {|0〉,
|1〉, |+θ 〉, |−θ 〉} and sends it to Bob.

(2) Bob chooses the {|0〉, |1〉} basis or the {|+θ 〉, |−θ 〉} basis uniformly randomly for each
received qubit and measures it by the chosen basis.

(3) Alice publicly announces which basis {|0〉, |1〉} or {|+θ 〉, |−θ 〉} each transmitted qubit
belongs to. Bob also publicly announces which basis was used for measurement of each
qubit.
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(4) Suppose that there are 2n qubits transmitted in the {|0〉, |1〉} basis and measured with the
{|+θ 〉, |−θ 〉} basis by Bob. Index those qubits by 1, . . . , 2n. Define the bit xi = 0 if Alice’s
ith qubit was |0〉, and xi = 1 otherwise. Define the bit yi = 0 if Bob’s measurement
outcome for ith qubit was |+θ 〉, and yi = 1 otherwise.

(5) Suppose also that there are 2n′ qubits transmitted in the {|0〉, |1〉} basis and measured
with the {|0〉, |1〉} basis by Bob. Index those qubits by 1, . . . , 2n′. Define the bit ai = 0
if Alice’s ith qubit was |0〉, and ai = 1 otherwise. Define the bit bi = 0 if Bob’s
measurement outcome for ith qubit was |0〉, and bi = 1 otherwise.

(6) Suppose also that there are 2n′′ qubits transmitted in the {|+θ 〉, |−θ 〉} basis and measured
with the {|+θ 〉, |−θ 〉} basis by Bob. Index those qubits by 1, . . . , 2n′′. Define the bit
αi = 0 if Alice’s ith qubit was |+θ 〉, and αi = 1 otherwise. Define the bit βi = 0 if Bob’s
measurement outcome for ith qubit was |+θ 〉, and βi = 1 otherwise.

(7) For each combination of the transmission and the reception bases, Alice and Bob publicly
announce the half of transmitted qubits and measurement outcomes. They conduct the
channel parameter estimation described in section 2.2. We also define

q1 = |{i ∈ S | xi �= yi}|
|S| , q2 = |{i ∈ S ′ | ai �= bi}|

|S ′| ,

where S and S ′ are the set of indices that are announced for the channel parameter
estimation.

(8) Alice and Bob decide3 a linear code C1 of length n such that its decoding error probability
is sufficiently small over all the binary symmetric channel whose crossover probability is
close to q1. Let H1 be a parity check matrix for C1, �x be Alice’s remaining (not announced)
bits among xi’s, and �y be Bob’s remaining bits among yi’s.

(9) Alice publicly announces the syndrome H1�x.
(10) Bob computes the error vector �e such that H1�e = H1�y − H1�x by the decoding algorithm

for C1. With a high probability �y − �e = �x.
(11) Alice chooses a subspace C2 ⊂ C1 with dim C2 = n(1 − S(X|E) + ε) uniformly and

randomly, where ε > 0 and S(X|E) denotes the conditional von Neumann entropy of
Alice’s bit xi given the quantum state of the environment E as defined in [13, 14], which
can be regarded as Eve’s ambiguity on Alice’s bit xi. After that she publicly announces
her choice of C2. The final shared secret key is the coset �x + C2.

Provided that ε > 0, the privacy amplification theorem with quantum eavesdropper’s memory
[13, 14] guarantees that the final key �x + C2 becomes secure in the sense of [13, 14] as
n → ∞, which roughly means that the final key and the quantum state of the environment
becomes statistically independent and that the final key has an almost uniform distribution on
the set C1/C2. We shall consider the amount of secret key obtained by the above protocol in
section 2.2.

2.2. Amount of secret key

We shall use the accurate channel parameter estimation [17], which gives asymptotically more
secret key than the conventional estimation. This procedure is as follows. We do not make
any assumption on the quantum channel between Alice and Bob, so the channel is specified by
12 real parameters. For 16 pairs (|u〉, |v〉) ∈ {|0〉, |1〉, |+θ 〉, |−θ 〉}2, we record the 16 relative
frequencies of the events in which |u〉 is transmitted and |v〉 is observed as the measurement
outcome, which enable us to estimate 6 out of 12 channel parameters. After estimating the

3 One can also use the Slepian–Wolf code used in [17].
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part of parameters, we use the minimum of S(X|E) over all the possible quantum channel,
that is, we use the worst case estimate of S(X|E) of quantum channels giving the 16 recorded
relative frequencies, as done in the conventional estimation [7, 13, 14]. The set of estimable
parameters with 0 < θ < π/4 is the same as θ = π/4. The reason is as follows. Since the
linear space spanned by {|0〉〈0|, |1〉〈1|, |+θ 〉〈+θ |, |−θ 〉〈−θ |} is the same for all 0 < θ � π/4
and the expectation of the relative frequency of sending |u〉 and observing |v〉 is proportional
to Tr[�(|u〉〈u|)|v〉〈v|] for any quantum channel �, there always exists a one-to-one linear
relation that translates the set of 16 relative frequencies with θ < π/4 to that with θ = π/4.
Therefore, the estimate of the worst case S(X|E) does not depend on the value of θ . This means
that the amount of secret key from matched measurement outcomes remains asymptotically
the same even if we use θ narrower than π/4.

We cannot use a straightforward generalization of the conventional channel parameter
estimation, that is to record two relative frequencies of event (a) in which |0〉 is sent and |1〉
is observed or |1〉 is sent and |0〉 is observed, and event (b) in which |+θ 〉 is sent and |−θ 〉 is
observed or |−θ 〉 is sent and |+θ 〉 is observed. The reason of unavailability of the conventional
channel parameter estimation is as follows. We cannot estimate the parameters of the Pauli
channel that is obtained as the partial twirling [3]4 of the actual quantum channel because
the relative frequency of event (b) also depends5 on the non-diagonal elements in the Choi
matrix [6] of the actual quantum channel with respect to the Bell basis as well as the diagonal
elements unless θ = π/4, and the four diagonal elements in the Choi matrix specify the Pauli
channel obtained by the partial twirling. Since the standard technique is to bound the required
dimension of C2 in step 11 over the actual channel from above by the required dim C2 over
its partially twirled channel, the inability to estimate the partially twirled channel prevents us
from obtaining a useful upper bound on dim C2 of the actual channel. Thus, it is difficult to
ensure that the worst case estimate of dim C2 is independent of θ by the above generalization
of the conventional channel parameter estimation, and we have to use 16 relative frequencies
to bound dim C2 from above.

The amount of secret key is [13, 14]

S(X|E) − h(q1)

from single bit xi not announced for the channel parameter estimation, while this amount is

S(X|E) − h(q2) (1)

from ai, where h( ) denotes the binary entropy function. Since q1 → q2 as θ → 0 and h( ) is
a continuous function, we conclude that we can obtain almost the same amount of secret key
from xi as ai.

2.3. Reverse reconciliation

The reverse reconciliation [4, 12] is the method of reconciliation in which Bob publicly
announces the syndrome H1�y in step 9 instead of Alice, Alice computes �y in step 10 instead
of Bob, and the final key is generated from �y. The standard way of reconciliation [15] is
called the direct reconciliation. In order to give a simpler exposition of the main contribution,
we have restricted ourselves to the direct reconciliation up to this point. In this subsection we
shall consider the reverse reconciliation and point out that the amount of secret key is often
different in the reverse reconciliation to the direct one over a Pauli channel.

We can also use the same parity check matrix H1 in step 8 since �x can be regarded as
the output of the binary symmetric channel with crossover probability q1 with input �y. We

4 See also equation (12) of [8], in which the partial twirling is called the discrete twirling.
5 The relative frequency of event (a) is independent of the non-diagonal elements in the Choi matrix.
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have to change dim C2 in step 11 to dim C2 = n(1 − S(Y |E) + ε), where S(Y |E) denotes the
conditional von Neumann entropy of Bob’s bit yi given the quantum state of the environment
E. We have to compute the minimum value of S(Y |E) over quantum channels that give the
recorded relative frequencies.

Hereafter we assume that the channel between Alice and Bob is a Pauli channel that sends
a qubit density matrix ρ to

	(ρ) = (1 − rX − rY − rZ)ρ + rXXρX + rY YρY + rZZρZ,

instead of a general qubit channel that is not necessarily a Pauli one. We define

pX = rX + rY , pZ = rZ + rY .

It is well known that the worst case S(X|E) is 1 − h(pZ) [7, 13, 14].
In the evaluation of the worst case S(Y |E), Bob’s bit Y can be regarded as the measurement

outcome in the {|0〉, |1〉} basis on the output of the unitary channel rotating |+θ 〉 to |0〉 and |−θ 〉
to |1〉, connected to the actual channel. The Pauli channel followed by a rotation is a unital
channel, which outputs the completely mixed state if the input is completely mixed. This
observation enables us to apply the formula for the worst case S(Y |E) over unital channels
given in proposition 2 and remark 6 of [17], which gives

S(Y |E) = 1 − h(pX) − h(pZ) + h

(
1 +

√
(1 − 2pX)2 cos2 2θ + (1 − 2pZ)2 sin2 2θ

2

)
.

We can see that S(Y |E) → 1 − h(pZ) as θ → 0 and S(Y |E) → 1 − h(pX) as θ → π/4,
which confirms our intuition. Observe also that generally S(X|E) �= S(Y |E) when pX �= pZ .

By using a similar idea, we can obtain Eve’s ambiguity on Alice’s bit αi that is transmitted
in the {|+θ 〉, |−θ 〉} basis. By the continuity of the von Neumann entropy, we can also see that
the amount of secret key from αi converges to equation (1) obtained from ai as n → ∞ and
θ → 0. Therefore, the conclusion in section 2.2 also holds for qubits transmitted by the {|+θ 〉,
|−θ 〉} basis.

3. Concluding remarks

We have shown that from mismatched measurement outcomes we can obtain as much secret
key per transmitted qubit as matched measurement outcomes over any channels if we make
the angle between two bases sufficiently narrow. The same conclusion holds for the six-state
protocol [5] and the variants of the standard BB84 protocols with the noisy preprocessing
[13, 14], and the advantage distillation [7, 18]. We have also pointed out that the reverse
reconciliation often gives different amount of secret key to the direct reconciliation over Pauli
channels with our modified protocol, which is in contrast to the standard BB84 protocol [15],
and that there is difficulty to use the conventional channel parameter estimation if the angle
between two bases is narrower than π/4.

The advantage of the proposed protocol is that we can obtain 1 − h(pX) − h(pZ) bits
of secret key per single qubit that is not used for channel parameter estimation. The same
advantage is also realized when we decrease the ratio of the number of transmitted qubits in
the {|+〉, |−〉} basis to that in the {|0〉, |1〉} basis [9, 10]. Although the proposed method, the
method in [9, 10], and their combination have exactly the same performance in the asymptotic
limit of infinitely many qubits, they may have different performances in the finite number of
qubits. The identification of the best method among these three methods in the finite setting
is a future research agenda. This identification might be analytically difficult as stated in the
introduction of [9].
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